人工智能时代刚刚到来,该领域的各种创业机会还处在相对早期的发展阶段。未来四五年对于人工智能时代的意义,和二十世纪七八十年代年代对于PC时代的意义相比,绝对毫不逊色。几乎可以预言,如果人工智能时代也会出现苹果、微软、Google、百度、阿里、腾讯等伟大公司的话,那么,这些公司一定会有相当数量是在这四五年内创立。
英国是另一个人工智能创业的乐园,研发AlphaGo的DeepMind就是一大批英国AI创业明星中的代表。2017年1月,我(李开复)和伦敦市长Sadiq Aman Khan讨论英国人工智能创业氛围时了解到,英国之所以在人工智能创业领域独具特色,主要是因为英国有足够优秀的人工智能科学家,在科研领域处于世界顶尖水平,但在资本、市场等大环境上,英国仍无法与美国相比,这是包括DeepMind在内的许多英国创业团队都被美国公司收购的原因。
加拿大是人工智能创业的“科研型孵化器”。深度学习三巨头中, Geoffrey Hinton和Yoshua Bengio都在加拿大的大学教书,这直接促成了加拿大极为出色的人工智能研究氛围。大批人工智能方向的优秀学生从加拿大的大学毕业。他们中的相当一部分都“南下”美国工作或创业,但也有不少人选择在加拿大开始他们的创业历程。
图1 按季度统计的AI初创公司被收购和并购的数量
中国的人工智能创业几乎与世界同步。根据《乌镇指数:全球人工智能发展报告2016》的统计:人工智能领域,美国与欧洲投资较为密集,数量较多,其次为中国、印度、以色列。美国共获得3450多笔投资,位列全球第一,英国获得274笔投资,位列第二,中国则以146笔投资位列第三。美国人工智能企业总数为2905家,全球第一。仅加州的旧金山/湾区、大洛杉矶地区两地的企业数量即达到1155家,占全球的19.13%。中国人工智能企业数量虽不及美国,但在北京、上海、深圳三大城市,也集中了一批高质量的人工智能团队。北京、上海、深圳的AI企业数量占全球总数的7.4%,在东亚地区位列前三。其中,北京的AI企业就有242家。
人工智能的商业化路线图
本质上,过去二十年的互联网和移动互联网是一个不断将线上、线下的业务场景紧密连接,同时也不断促使数据产生、流转、集中和再利用的过程。如果把世界看成一个大市场,互联网和移动互联网的作用就是让这个大市场中的信息更透明,让信息流通更顺畅,以此降低交易成本,消除信息不对称。
从投资人的角度看,AI兴起的大契机还不是深度学习技术的发明,而是过去20年互联网、移动互联网的高速发展对自动化的强烈需求。有了这个需求,有了成熟的业务流程和高质量的大数据,深度学习技术的突破就是“万事俱备、只欠东风”的事了。
所以,战略方面,我们丝毫不用担心AI能否落地、能否商业化。Google、Facebook、百度等互联网巨头的搜索和广告业务本质上就是机器学习驱动的,而且早已被证明是成功的。我们需要关心的,只是人工智能在接下来的时间内,以何种趋势、何种方式在其他领域落地的问题。
创新工场管理合伙人,资深投资人汪华认为,人工智能的商业化大致可分为三个主要阶段:
第一阶段,AI会率先在那些在线化程度高的行业开始应用,在数据端、媒体端实现自动化。这一过程会首先从线上“虚拟世界”开始,随着在线化的发展扩张到各行业,帮助线上业务实现流程自动化、数据自动化、业务自动化。
互联网和移动互联网的发展已经在许多领域为AI做好了业务流程和数据上的准备。拥有高质量线上大数据的行业会最早进入人工智能时代。例如,大家常说金融行业是目前人工智能应用的热点,这正是因为金融行业特别是互联网金融已经做好了使用AI的准备。
第二阶段,随着感知技术、传感器和机器人技术的发展,AI会延伸到实体世界,并率先在专业领域、行业应用、生产力端实现线下业务的自动化。
可以感知实体世界信息的传感器和相关的感知技术会越来越成熟、越来越便宜。在线下业务中,计算机系统可以通过物理方式,接受线下信息或帮助完成线下操作。这个转变意味着人工智能从线上的“虚拟世界”走进了线下的实体世界。
第三阶段,当成本技术进一步成熟,AI会延伸到个人场景,全面自动化的时代终将到来。
随着技术日趋成熟,相关的智能产品价格大幅下降,AI终将从企业应用进入个人和家庭。那时,每个人的工作和生活中,大量的应用场景都会因为AI的帮助而更加自动化、更有效率,人类的生活质量终将因AI普及而大幅提升。这个阶段里,AI商业化的核心目标是创建全面自动化的人类生活方式。
就各垂直领域具体来说,人工智能在互联网、移动互联网领域的应用,如搜索引擎、广告推荐等已经非常成熟。在商业自动化、语音识别、机器视觉、手势识别、基础传感器、工业机器人等方面,人工智能可以立即应用,立即收效。
图2 创新工场在人工智能领域的投资布局
金融类人工智能的应用虽然已经起步,但尚需一段时间才能真正普及。智能教育、智能医疗、AR/VR中的人工智能、量产的传感器、商业用机器人等,预计会在三到五年内成熟可用。
可以供普通技术人员乃至非技术人员使用的人工智能平台(包括计算架构、算法框架、传感平台、云服务等等),大约会在三到五年后趋于成熟并拥有足够大的商业机会。
另外,在自动驾驶领域,三到五年内,必将是第二级到第三级的辅助驾驶最先大规模商用,而且,鉴于安全考虑,这些自动驾驶应用也会是限定场景、限定道路等级的。真正意义上的“无人驾驶”,即第四级或第五级的自动驾驶,大概还需要五到十年,才能上路运行。
AI创业的泡沫现象及六大挑战
当然,看到人工智能创业机遇的同时,我们也必须保持足够清醒的头脑。2016到2017年,人工智能的创业和投资明显存在无序、失衡、过热的情况。人们常常担忧的泡沫现象的确存在。
看一看如星火燎原般在美国、中国、以色列等地建立的自动驾驶创业团队吧,自动驾驶这个行业确实巨大,但真的需要那么多早期创业团队吗?要做一个第四级或第五级的自动驾驶,技术难度异常之大,非要投入巨资和最顶尖的研发人才不可。
家用机器人的概念就更别提了。那么多号称开始研发家用机器人的公司,如果是做亚马逊Echo那样的限定使用场景的智能家电还好说,如果上来就要做语言交流、人形外观的机器人,那几乎一定会因为技术水平无法达到人类用户预期而走向失败。这道理很好理解,越是长得像人的机器人,用户就越是会用人的标准去衡量、评价它,希望越大,失望也就越大。
语音和自然语言处理方面的创业也有类似问题。今天的语音识别虽然做得相当不错,但机器的能力仅限于感知领域,只能完成听写这种以转录为主的任务。也就是说,机器目前只能很有效地将语音转换为文字,但根本无法直接理解文字的含义。只有限定一个非常特定的领域,技术才能解决问题,如果要求自然语言处理算法支持通用的人机对话,那就不切实际了。目前有许多从事智能客服、智能聊天机器人创业的团队,这些团队如果不善于界定问题领域,就很容易将需求问题变复杂,以至于人工智能技术也爱莫能助。
基于人脸识别技术的身份认证、安防类应用是中国人工智能创业的特色领域,并已经产生了至少四家独角兽或接近独角兽规模的创业公司。但这个领域的市场空间绝对不会像自动驾驶那么宽广,目前二三十家公司都要削尖脑袋挤进人脸识别市场的情况显然是过热了。
基于人工智能的辅助医疗诊断刚刚起步,就出现了一大批瞄准这一方向的创业公司。但只要是熟悉医疗行业的人都很清楚,在这个行业里,要得到闭环的、有标注的、数据量足以发挥深度学习效能的医疗大数据,其难度远超普通人的想象。
概括来说,目前的人工智能产业发展面临六大挑战:
一、前沿科研与产业实践尚未紧密衔接:除少数垂直领域凭借多年大数据积累和业务流程优化经验,已催生出营销、风控、智能投顾、安防等人工智能技术可直接落地的应用场景外,大多数传统行业的业务需求与人工智能的前沿科技成果之间尚存在不小距离。面向普通消费者的移动互联网应用与人工智能技术之间的结合尚处在探索阶段。
二、人才缺口巨大,人才结构失衡:据LinkedIn统计,全球目前拥有约 25 万名人工智能专业人才,其中美国约占三分之一。这一数量级的人才储备远无法满足未来几年中人工智能在垂直领域及消费者市场快速、稳健增长的宏观需求。人才供需矛盾显著,高级算法工程师、研究员和科学家的身价持续走高。人才结构方面,高端人才、中坚力量和基础人才间的数量比例远未达到最优。
三、数据孤岛化和碎片化问题明显:数据隐私、数据安全对人工智能技术建立跨行业、跨领域的大数据模型提出了政策、法规与监管方面的要求。各垂直领域的从业者从商业利益出发,也为数据的共享和流转限定了基本的规则和边界。
四、可复用和标准化的技术框架、平台、工具、服务尚未成熟:虽然TensorFlow、Caffe、MXNet等深度学习框架已被数以万计的研发团队采纳,相关开源项目的数量也在飞速增加,但一个完整人工智能生态所必备的,从芯片、总线、平台、架构到框架、应用模型、测评工具、可视化工具、云服务的模块化与标准化工作,尚需三年或更长时间才能真正成熟。
五、一些领域存在超前发展、盲目投资等问题:目前的人工智能技术只有在限定问题边界、规范使用场景、拥有大数据支持的领域才能发挥大效能。但创投界存在盲目追捧,不顾领域自身发展程度,或利用人工智能来包装概念等现象。由此产生的盲目创业和投资问题虽非主流,但仍有可能伤害整个行业的健康发展。
六、创业难度相对较高,早期创业团队需要更多支持:与互联网时代、移动互联网时代的创业相比,人工智能创业团队面临诸多新的挑战。例如,对高级人才较为依赖,科学家创业者自身的商业实践经验较少,高质量大数据较难获得,深度学习计算单元和计算集群的价格十分昂贵等。
既是时代“风口”,又有“泡沫”干扰——这是人工智能创业在今天的主旋律。
关联阅读: