中国IDC圈2月26日报道:什么是大数据?数据可视化如何帮助企业更好地利用数据资源?一些人知道大数据的真正含义,然而其他人声称自己懂大数据,只是为了让他们看起来并不低人一等。尽管大数据是一个热门话题,但是对许多企业和数据专业人员来说,它仍然很难理解。Kimberly-Clark的全球总监Robert Abate,在“数据可视化的智慧”中讨论人们对大数据的无知。他认为,大数据话题和大数据的神秘就像青少年的人际关系问题。他说:“每个人都在讨论大数据,但是没有人真正地知道如何去处理。这是许多传言的来源。每个人都认为其他所有人都在研究大数据,所以都说自己也在研究。”

然而按定义来说,什么是大数据呢?很明显,大数据是指大量的能够收集、存储的原始数据,经过各种分析可以揭示企业的行为模式和发展趋势,尤其是消费者的。它可以用于大限度地发挥业务潜力。这就是Robert Abate在演讲开始时明确指出的一点。他说的重点是,通过数据可视化能够有效地利用大数据。

为什么大数据如此重要?

他说,大数据对企业那么有用是因为它可以给企业的许多问题提供答案,而这些问题他们先前甚至都不知道。换句话说就是它提供了参考点。有了这样大的信息量,公司可以用各种它们认为合适的方法重新处理数据或进行测试。这样,就能用一种更容易理解的方式查明问题。收集大量数据,并在数据中发现趋势,使企业能够更快、更平稳、更有效地发展。这也可以让它们在利益和名声受损之前排除一些问题。

没有数据的帮助,企业采取的无数行动都可能威胁、损害或彻底毁灭企业。数据就像公司呼吸的空气。正如人们没有氧气不能生存一样,公司没有维持生存的必要数据也不能存活。没有这种空气,公司将会窒息而死。

每家公司都在使用数据。一个公司使用数据越有效,它的潜力就越大。这样的真理众所周知,但是据Abate先生说,许多企业还没有真正领悟这简单的思想:

“我们面临的一部分挑战是如何向企业说明数据能够做什么,业务如何成为真正的主题。我们不得不解决如何进行数据沟通和怎样与它们创建直接联系。”

大数据,尤其是跟信息图表和可视元素用在一起时,能够更快地得到问题的答案。这是一个理想,因为公司从来源中获取信息越快,获得答案就越快。他说,只是拥有更多信息并不能产生速度。没有人处理这些数据让它们更有意义,那么它们仍然是原始数据,没有任何价值。更多的人处理数据不等于有更多的优势,同样,员工越多不会提高生产力,反而会阻碍生产效率的提高。

那么企业应该做什么呢?

用大数据和数据可视化提高生产力

如果一个组织能够将更多的事务有效地进行可视化显示,那么他们可以提高认知能力。Abate先生打比方说,许多人都在工作,他们只使用一台电脑显示器,但一台电脑显示器只能做那么多:它有局限性。这使得个人不能够提高他的潜力。如果一个人有两台电脑显示器甚至三台,他们解决各种问题以及得出结论的能力将会提高。如果他们有更多的资源,他们也会更好地利用自己的时间。当涉及到大数据时,“一张图片胜过千言万语”还不足以说明图片的重要性。人们很容易地以可视的或物理的角度观察数据,它比看表格容易的多。

他给了一个简单的解释:“简单地说,如果西南部的销售额下降,人们可以使用另一台电脑或电话查到西南地区的天气。这样,人们会意识到西南部有一场暴风雪,这就解释了为什么这个星期的销售额骤然下跌了。因为很明显,如果人们不能到达商店,他们就不会买东西。”

为什么突然依赖大数据?

大量的手机、平板电脑、翻转电脑、云计算及传感器和物联网的出现,产生了人们不可想像的数据量。根据演讲资料的揭示,这两年产生的数据量,超过了此前的历史上的数据量。虽然,20世纪50年代就有计算机网络,但数据量激增是近年的事情,人们将更会注意到大数据的力量。

列举更多的冲击值。Abate先生的幻灯片显示:

每60秒,至少98000条推特出现在推特网上;

每60秒,Facebook更新69500条动态;

每60秒,1100万即时信息被发送;

每60秒,有698445条谷歌搜索;

每60秒,至少1亿6800万封电子邮件被发送;

每60秒,1820TB的数据被创建。

这也难怪,为什么过去的两年时间里产生的数据量,就超过了历史上其它时间的总和。

但是,如果没有方法使信息形成数据湖或其它的形式,所有这些信息都是无用的。

充分利用数据

了解数据具有的特点是成功使用大数据的关键。人们都知道“了解你的客户”,会使公司营销有更高的成功率。

他给出了一个案例,他的团队帮助他们的客户整理数据。他们从数据集中删除了任何不相关的或离群的数据,从而缩小到一个关键问题或用户信息统计。这样,他们就能分辨出哪一类产品出售的多,哪一类产品没有出售,因此可能要被淘汰。他们关注4个主要的数据:收入、频率、价值、年期。Abate先生强调,同一时间,在任何给予的可视化范围内,超过4个数据就会让人更难跟踪。通过淘汰没有出售的产品,他们正在减少浪费来增加未来的收入。但是没有数据可视化,他们不可能完成这项工作。

数据可视化是关键。通过增加数据可视化使用,企业能够发现他们追求的价值。创建更多的信息图表,使用更多的资源,让他们更快地获得更多的信息。这使他们意识到他们已经知道很多信息,而这些信息先前就应该是很明显的。这就增加了部门的作用,因为他们能够提出更好的问题。它创建了似乎没有任何联系的数据点之间的连接。人们能够分辨出有用的和没用的数据,这样,就能大限度的提高他们的生产力,让信息的价值大化。

利用大数据资产对任何公司来说都是很重要的,不论公司大小。当大数据的潜力通过可视化达到大时,之前未看到的趋势就很容易被发现。正如Abate先生谈到的,这些趋势可以提供“信息”并能转化成有价值的“见解”,如:谁是他们的客户,他们有多少客户,谁是高端客户,谁是低端客户等等。

最后,他讨论一些关键注意事项。他说,大数据可视化是未来的发展趋势,使用更多的工具来获得更多的见解也是必须的。他列举了一些最佳实践方法:建立迭代、每个图形最多含4个主要因素、可视化动态情形、以及预防极端情况的网络规模升级计划。

关注中国IDC圈官方微信:idc-quan 我们将定期推送IDC产业最新资讯

查看心情排行你看到此篇文章的感受是:


  • 支持

  • 高兴

  • 震惊

  • 愤怒

  • 无聊

  • 无奈

  • 谎言

  • 枪稿

  • 不解

  • 标题党
2023-08-24 09:38:00
大数据资讯 关注县域数据能力建设,抢占产数业务发展先机
2023年《数字中国建设整体布局规划》正式发布,数据能力已成为我国区域发展的底座和创新引擎。 <详情>
2023-03-30 11:15:07
云资讯 分布式时代已至,数据如何更有价值?
无论是连通各大集群内大型超大型数据中心,还是连接边缘侧小型、边缘数据中心,分布式云计算都已成为这张算力网络最重要的支撑。在此背景下,云计算步入分布式时代。 <详情>
2023-03-01 19:27:00
市场情报 FlagOpen大模型技术开源体系,开启大模型时代“新Linux”生态
大数据+大算力+强算法=大模型”是当前人工智能发展的主要技术路径。语言大模型ChatGPT成为现象级应用,人工智能进入普及应用的新时期。 <详情>
2023-01-09 09:36:46
大数据资讯 我国互联网广告数据匿名实施服务正式上线
《指南》形成的“技术保障、评估规制、过程控制”的互信制衡机制,适用于各类互联网广告业务,包括广告投放、程序化交易、广告监测等应用场景下的数据匿名化处理。 <详情>
2022-12-30 10:10:19
大数据资讯 中国移动磐维数据库正式发布
未来,随着数据库功能和稳定性等进一步增强,磐维数据库将在中国移动内外部的广泛应用中积累更多复杂业务场景实践经验,进一步提升数据库产品的核心技术能力,助力数智化转 <详情>
12月19-20日,8000+算力产业代表齐聚北京,第十九届中国IDC产业年度大典即将正式启幕!
2024-12-11 11:57:02
议程揭晓丨12月20日算力技术创新与应用系列论坛
2024-12-09 15:47:29
采访普洛斯数据中心郭仁声:智算时代 我们需要怎样的算力与数据中心
2024-12-09 11:44:05
5040机架 内蒙古云著智算产业园项目一期封顶
2024-12-06 14:24:19
马斯克超级计算集群再升级:xAI扩大GPU规模至百万
2024-12-06 14:21:34
未来10年的智算中心应该怎么建?|12月20日北京,AI算力建设系列论坛将启
2024-12-06 11:44:36
亚马逊发布超级计算机集群和新型AI芯片服务器
2024-12-05 14:54:16
12月20日北京,聚焦区域算力生态|2024算力产业生态高质量发展大会
2024-12-05 11:27:14
以用户需求为核心,科华数据领航高端定制数据中心新赛道
2024-12-04 15:52:50
英特尔CEO突然宣布退休 数据中心芯片竞争力不足或是主因
2024-12-04 10:12:00
莲花控股终止与新华三6.93亿订单:已自持700台算力服务器
2024-12-04 10:06:00
头部算力企业将悉数亮相、大咖云集,完整议程重磅公布|12月19-20日,北京,第十九届中国IDC产业年度大典重磅启幕
2024-12-04 09:54:00
总机柜1.8万个 兴业银行贵安新区数据中心开工
2024-12-03 10:07:00
SUSE推出一站式可观测性平台SUSE Cloud Observability 助力Rancher社区用户告别多工具监控
2024-11-28 15:19:38
800亿 17座数据中心落地马来西亚雪州
2024-11-28 14:53:32